日本Otsuka顯微分光膜厚儀OPTM SERIES

型號(hào):OPTM SERIES
使用顯微光譜法在微小區(qū)域內(nèi)通過(guò)絕對(duì)反射率進(jìn)行測(cè)量,可進(jìn)行高精度膜厚度 光學(xué)常數(shù)分析。 可通過(guò)非破壞性和非接觸方式測(cè)量涂膜的厚度,例如各種膜、晶片、光學(xué)材料和多層膜。 測(cè)量時(shí)間

在線咨詢
服務(wù)熱線 0755-86677030

產(chǎn)品描述

產(chǎn)品信息

特點(diǎn)

頭部集成了薄膜厚度測(cè)量所需功能
通過(guò)顯微光譜法測(cè)量高精度絕對(duì)反射率(多層膜厚度,光學(xué)常數(shù))
1點(diǎn)1秒高速測(cè)量
顯微分光下廣范圍的光學(xué)系統(tǒng)(紫外至近紅外)
區(qū)域傳感器的安全機(jī)制
易于分析向?qū)?,初學(xué)者也能夠進(jìn)行光學(xué)常數(shù)分析
獨(dú)立測(cè)量頭對(duì)應(yīng)各種inline客制化需求
支持各種自定義



OPTM-A1OPTM-A2OPTM-A3
波長(zhǎng)范圍230 ~ 800 nm360 ~ 1100 nm900 ~ 1600 nm
膜厚范圍1nm ~ 35μm7nm ~ 49μm16nm ~ 92μm
測(cè)定時(shí)間1秒 / 1點(diǎn)
光斑大小10μm (最小約5μm)
感光元件CCDInGaAs
光源規(guī)格氘燈+鹵素?zé)? 鹵素?zé)?/span>
電源規(guī)格AC100V±10V 750VA(自動(dòng)樣品臺(tái)規(guī)格)
尺寸555(W) × 537(D) × 568(H) mm (自動(dòng)樣品臺(tái)規(guī)格之主體部分)
重量約 55kg(自動(dòng)樣品臺(tái)規(guī)格之主體部分


測(cè)量項(xiàng)目:
絕對(duì)反射率測(cè)量
多層膜解析
光學(xué)常數(shù)分析(n:折射率,k:消光系數(shù))

測(cè)量示例:
SiO 2 SiN [FE-0002]的膜厚測(cè)量

半導(dǎo)體晶體管通過(guò)控制電流的導(dǎo)通狀態(tài)來(lái)發(fā)送信號(hào),但是為了防止電流泄漏和另一個(gè)晶體管的電流流過(guò)任意路徑,有必要隔離晶體管,埋入絕緣膜。 SiO 2(二氧化硅)或SiN(氮化硅)可用于絕緣膜。 SiO 2用作絕緣膜,而SiN用作具有比SiO 2更高的介電常數(shù)的絕緣膜,或是作為通過(guò)CMP去除SiO 2的不必要的阻擋層。之后SiN也被去除。 為了絕緣膜的性能和精確的工藝控制,有必要測(cè)量這些膜厚度。

c2.jpg

c3.jpg

c4.jpg

彩色抗蝕劑(RGB)的薄膜厚度測(cè)量[FE - 0003]

液晶顯示器的結(jié)構(gòu)通常如右圖所示。 CF在一個(gè)像素中具有RGB,并且它是非常精細(xì)的微小圖案。 在CF膜形成方法中,主流是采用應(yīng)用在玻璃的整個(gè)表面上涂覆基于顏料的彩色抗蝕劑,通過(guò)光刻對(duì)其進(jìn)行曝光和顯影,并且在每個(gè)RGB處僅留下圖案化的部分的工藝。 在這種情況下,如果彩色抗蝕劑的厚度不恒定,將導(dǎo)致圖案變形和作為濾色器導(dǎo)致顏色變化,因此管理膜厚度值很重要。

c5.jpg

c6.jpg

硬涂層膜厚度的測(cè)量[FE-0004]

近年來(lái),使用具有各種功能的高性能薄膜的產(chǎn)品被廣泛使用,并且根據(jù)應(yīng)用不同,還需要提供具有諸如摩擦阻力,抗沖擊性,耐熱性,薄膜表面的耐化學(xué)性等性能的保護(hù)薄膜。通常保護(hù)膜層是使用形成的硬涂層(HC)膜,但是根據(jù)HC膜的厚度不同,可能出現(xiàn)不起保護(hù)膜的作用,膜中發(fā)生翹曲,或者外觀不均勻和變形等不良。 因此,管理HC層的膜厚值很有必要。

c7.jpg

c8.jpg

考慮到表面粗糙度測(cè)量的膜厚值[FE-0007]

當(dāng)樣品表面存在粗糙度(粗糙度)時(shí),將表面粗糙度和空氣(air)及膜厚材料以1:1的比例混合,模擬為“粗糙層”,可以分析粗糙度和膜厚度。此處示例了測(cè)量表面粗糙度為幾nm的SiN(氮化硅)的情況。

c9.jpg

c10.jpg

使用超晶格模型測(cè)量干涉濾波器[FE-0009]

當(dāng)樣品表面存在粗糙度(粗糙度)時(shí),將表面粗糙度和空氣(air)及膜厚材料以1:1的比例混合,模擬為“粗糙層”,可以分析粗糙度和膜厚度。此處示例了測(cè)量表面粗糙度為幾nm的SiN(氮化硅)的情況。

c11.jpg

c12.jpg

使用非干涉層模型測(cè)量封裝的有機(jī)EL材料[FE - 0010]

有機(jī)EL材料易受氧氣和水分的影響,并且在正常大氣條件下它們可能會(huì)發(fā)生變質(zhì)和損壞。 因此,在成膜后需立即用玻璃密封。 此處展示了密封狀態(tài)下通過(guò)玻璃測(cè)量膜厚度的情況。玻璃和中間空氣層使用非干涉層模型。

10-1.jpg

APP10-2(1).jpg

使用多點(diǎn)相同分析測(cè)量未知的超薄nk [FE-0013]

為了通過(guò)擬合最小二乘法來(lái)分析膜厚度值(d)需要材料nk。 如果nk未知,則d和nk都被分析為可變參數(shù)。 然而,在d為100nm或更小的超薄膜的情況下,d和nk是無(wú)法分離的,因此精度將降低并且將無(wú)法求出精確的d。 在這種情況下,測(cè)量不同d的多個(gè)樣本,假設(shè)nk是相同的,并進(jìn)行同時(shí)分析(多點(diǎn)相同分析), 則可以高精度、精確地求出nk和d。

APP13-1.jpg

APP13-2.jpg

用界面系數(shù)測(cè)量基板的薄膜厚度[FE-0015]

如果基板表面非鏡面且粗糙度大,則由于散射,測(cè)量光降低且測(cè)量的反射率低于實(shí)際值。而通過(guò)使用界面系數(shù),因?yàn)榭紤]到了基板表面上的反射率的降低,可以測(cè)量出基板上薄膜的膜厚度值。 作為示例,展示測(cè)量發(fā)絲成品鋁基板上的樹(shù)脂膜的膜厚度的例子。

APP15-1.jpg

APP15-2.jpg

各種用途的DLC涂層厚度的測(cè)量

DLC(類金剛石碳)是無(wú)定形碳基材料。 由于其高硬度、低摩擦系數(shù)、耐磨性、電絕緣性、高阻隔性、表面改性以及與其他材料的親和性等特征,被廣泛用于各種用途。 近年來(lái),根據(jù)各種不同的應(yīng)用,膜厚度測(cè)量的需求也在增加。

一般做法是通過(guò)使用電子顯微鏡觀察準(zhǔn)備的監(jiān)測(cè)樣品橫截面來(lái)進(jìn)行破壞性的DLC厚度測(cè)量。而大塚電子采用的光干涉型膜厚計(jì),則可以非破壞性地和高速地進(jìn)行測(cè)量。通過(guò)改變測(cè)量波長(zhǎng)范圍,還可以測(cè)量從極薄膜到超厚膜的廣范圍的膜厚度。

通過(guò)采用我們自己的顯微鏡光學(xué)系統(tǒng),不僅可以測(cè)量監(jiān)測(cè)樣品,還可以測(cè)量有形狀的樣品。 此外,監(jiān)視器一邊確認(rèn)檢查測(cè)量位置一邊進(jìn)行測(cè)量的方式,還可以用于分析異常原因。

支持定制的傾斜/旋轉(zhuǎn)平臺(tái),可對(duì)應(yīng)各種形狀??梢詼y(cè)量實(shí)際樣本的任意多處位置。

光學(xué)干涉膜厚度系統(tǒng)的薄弱點(diǎn)是在不知道材料的光學(xué)常數(shù)(nk)的情況下,無(wú)法進(jìn)行精確的膜厚度測(cè)量,對(duì)此大塚電子通過(guò)使用獨(dú)特的分析方法來(lái)確認(rèn):多點(diǎn)分析。通過(guò)同時(shí)分析事先準(zhǔn)備的厚度不同的樣品即可測(cè)量。與傳統(tǒng)測(cè)量方法相比,可以獲得極高精度的nk。
通過(guò)NIST(美國(guó)國(guó)家標(biāo)準(zhǔn)與技術(shù)研究院)認(rèn)證的標(biāo)準(zhǔn)樣品進(jìn)行校準(zhǔn),保證了可追溯性。

DLC-0(2).jpg

DLC-22.jpg

DLC-3.jpg


在線
客服